Rapid Assessment of Unpaved Roads and Trails

- Presented by:
 - Michael Fuller, Senior Engineering
 Geologist, California Geological Survey
 - In cooperation with California StateParks

Condition Assessment

- Observation and location data collected on:
 - —Facilities
 - –Erosion
 - -Geomorphology
 - Hydrology
- Data managed in a GIS (geographic information system)

Erosion Assessment-Problem

Field conditions result from a history of events that are not precisely known during the assessment.

Speculations of the cause of particular conditions and appropriate mitigations can be subjective, controversial, and inconsistent.

Erosion Assessment - Solution

- We use a system of metrics and indicators to provide objective and transparent interpretations.
- We use the metrics to generate indices.

Metrics

—Observations and measurements of conditions adjacent to or within a road/trail that are recorded relative to linear distances along the road/trail.

Indicators

- Geological and hydrological conditions that generally relate to elevated erosion potential.
- These can be documented by fieldwork in combination with a GIS, aerial photos, and a variety of maps.

Indices

- The indices provide relative scoring systems by which comparisons can be made.
- These indices are computed for each associated feature and at higher levels such as segments, networks, watersheds, or parks.
- Thus, indices provide data driven
 assessments of conditions at larger spatial
 scales.

Drainage Structures – Metrics and Indices

- 20 metrics represent various structural and functional impairments
 - -maintenance issues,
 - -installation issues,
 - –mixed installation and environment issues, and

-stressed fill.

Drainage Structure Metric- Example

Drainage Structure Condition Index

- DSCI = (Condition factor) x (severity factor)
- DSCI values range from 1 to 16 provide a rating scale.
- The values are not pure mathematical quantities:
 - they are simply relative scores by which the data can be sorted and trends evaluated.

Erosion – Metrics and Indices

 24 metrics that represent various soil and hydrologic characteristics related to erodibility and runoff

Erosion Metric - Example

Potential significance to water resources

- Factors that characterize the magnitude of potential significance for each event of erosion include:
 - -1) the severity of the erosion,
 - -2) the connectivity to water resources,and

-3) the width of the road/trail.

IPSWR

- IPSWR = (Connectivity factor) x (severity factor) x (road width factor).
- IPSWR values which will range from 1 to 60 provide a rating scale.
- IPSWR values are not pure mathematical quantities:
 - they are simply relative scores by which the data can be sorted and trends evaluated.

Significance to Watersheds

- To consider the magnitude of significance at the scale of a watershed, add up the indices for that area.
- The total of the indices represents a general magnitude of the observed metrics affecting that geographic area.
- Watersheds with greater totals can be assumed to represent greater potential
 significance to water resources

Cluster Analysis

 Cluster analysis provides a basis (an actual map) for identifying any underlying associations with geology and landuse history that make one area more prone to erosion than another.

Cluster analysis - Example

- Mount Diablo State Park
- Clusters correlated well to a fault zone that hosts metallic ore deposits, primarily mercury ore.
- Clusters correlate especially well with areas that were mined and associated mining roads.

Cluster analysis - Example

- This suggests that on-going sediment discharges from these areas of legacy land use may include toxic metals.
- If spatially explicit geochemistry data become available, it could be used as another weighting factor for a more refined cluster analysis.

POTENTIAL SIGNIFICANCE TO WATER RESOURCES

To consider the magnitude of significance at the scale of individual road/trails, we simply add up the indices for the entire road/trail.

The top ten in terms of cumulative scores for potential significance to water resources are shown below.

TALLY BY WATERSHED

By tallying up the sum of the indices of significance to water resources on a watershed basis, we can determine how watersheds compare.

The watersheds with the higher totals are potentially the most affected by erosion.

Questions?